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Abstract
We apply stochastic quantization to a system of N interacting identical bosons
in an external potential �, by means of a general stationary-action principle.
The collective motion is described in terms of a Markovian diffusion on R

3N ,
with joint density ρ̂ and entangled current velocity field V̂ , in principle of non-
gradient form, related to one another by the continuity equation. Dynamical
equations relax to those of canonical quantization, in some analogy with Parisi–
Wu stochastic quantization. Thanks to the identity of particles, the one-particle
marginal densities ρ, in the physical space R

3, are all the same and it is possible
to give, under mild conditions, a natural definition of the single-particle current
velocity, which is related to ρ by the continuity equation in R

3. The motion of
single particles in the physical space comes to be described in terms of a non-
Markovian three-dimensional diffusion with common density ρ and, at least
at dynamical equilibrium, common current velocity v. The three-dimensional
drift is perturbed by zero-mean terms depending on the whole configuration
of the N-boson interacting system. Finally, we discuss in detail under which
conditions the one-particle dynamical equations, which in their general form
allow rotational perturbations, can be particularized, up to a change of variables,
to the Gross–Pitaevskii equations.

PACS numbers: 05.40.−a, 03.65.−w, 05.30.−d
Mathematics Subject Classification: 60Gxx, 81P20, 82C22

1. Introduction

Stochastic quantization methods based on variational principles (see [4, 22, 27] and references
quoted therein) were introduced in the latest 1980s, as a natural development of the approach
proposed by Nelson in his pioneering work on stochastic mechanics [26], based on a stochastic
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reformulation of Newton’s second law. Since the basic starting object is the classical
Lagrangian, stochastic quantization procedures based on action principles could be applied in
general to any system with a finite number of degrees of freedom, but this fact seems not to have
been yet exploited in the literature. In this paper, we use a stochastic variational principle to
obtain the dynamical evolution of a system of N identical interacting bosons. This in particular
means that we improve the usual description, based on a time-dependent wavefunction on
Ł2

C
(R3N), through a 3N -dimensional Markov diffusion uniquely associated with it. As a

consequence, by using some well-defined mathematical manipulations and simplifications,
one-particle three-dimensional equations of motion in conditional mean (propositions 2 and
3) can be obtained. Moreover precise assumptions, under which such dynamical equations
can be particularized, up to a change of variables, to the Gross–Pitaevskii equations [10, 29],
will be described.

Among the various action principles proposed in the literature we have chosen to apply
the Lagrangian stochastic variational principle formulated in [17, 20, 21]. A variant with the
introduction of a free parameter is proposed in [11]. An extension to curved configuration
space is provided in [2].

This approach allows on the one hand to work with smooth mathematical objects and, on
the other hand, to obtain generalized equations of motion where non-gradient velocity fields
are allowed. These generalized solutions approximate the canonical ones after a relaxation
time, in some analogy with the Parisi–Wu approach [28]. In the three-dimensional case the
vorticity can concentrate in the zeros of the density, originating the typical singular solutions
of Madelung fluid equations which correspond to wavefunctions with nodes (see [6] for a
numerical example with the formation of central vortex lines).

We also quote that in [24] and [25] the case of Gaussian and linear solution for the
bidimensional harmonic oscillator was carefully worked out, proving the global existence of
solutions, for which Schrödinger Gaussian solutions constitute a centre manifold. It was in
particular also proved that convergence is in the sense of the relative entropy.

As far as the present work is concerned, smoothness properties will be useful to prove
in a quite elementary way the main results of section 2, while the occurrence of non-gradient
velocity fields leaves open, in principle, the possibility of describing rotational excitations in
the one-particle dynamical equations. We make reference to the problems connected to the
existence of rotational excitations in a Bose condensate described by the Gross–Pitaevskii
equation [3].

The plan of the paper is the following: in section 2 we describe the quantization of the
N-particles system by means of the stochastic Lagrangian variational principle, in section 3
we study the consequences of working with identical particles and symmetric wavefunctions.
Finally, in section 4 we particularize the dynamics in order to get, for a smooth short-range
interaction potential, the Gross–Pitaevskii equation. Possible developments are outlined in
section 5.

2. Quantization of the interacting N-particles system

We consider a system of N identical interacting particles with quantum Hamiltonian

H =
N∑

i=1

{
− h̄2

2m
∇2

i + �(ri )

}
+ �int(r1, . . . , rN, α)

where � and �int denote, respectively, the external and interaction potentials, ri is the position
of the ith particle in the physical space and α is a coupling parameter. We assume that H
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is bounded from below, so that H has a self-adjoint extension which is the generator of the
unitary group which describes the evolution in time of the wavefunction �̂ in L2

C
(R3N, dr̂).

The 3N -dimensional Schrödinger equation reads, in compact form,

ih̄∂t �̂ =
(

− h̄2

2m
∇̂2 + �

α,N
tot

)
�̂ (2.1)

where ∇̂ := (∇1, . . . ,∇N) and �
α,N
tot := ∑N

i=1 �(ri ) + �int(r1, . . . , rN, α).
In stochastic quantization by the Lagrangian variational principle the basic object is the

classical Lagrangian

L[q̂cl] =
N∑

i=1

{
1

2
m
(
q̇cl

i

)2
(t) − �

(
qcl

i (t)
)}− �int

(
qcl

1 (t), . . . , qcl
N(t), α

)
where q̂cl denotes the classical N-body configuration.

Quantization comes from requiring that the configuration of the system is in fact a Markov
diffusion q̂ with time-dependent drift b̂ and diffusion matrix equal to h̄

m
I , where I denoting

the identity matrix in R
3N .

The assumptions needed by the quantization procedure are as follows:

(i) The drift, denoted by b̂, is smooth both as a function of r̂ and t ∈ [0, T ], T < ∞.
(ii) q̂ = (q1, . . . , qN) is a pathwise solution of the 3N -dimensional stochastic differential

equation

dq̂(t) = b̂(q̂(t), t) +

(
h̄

m

)1/2

dŴ (t) (2.2)

where Ŵ := (W1, . . . , WN) and Wi , i = 1, . . . , N, are three-dimensional independent
standard Brownian motions which model quantum fluctuations acting on the ith particle.
A finite energy condition [9] is also assumed.

Then one can prove in particular that, denoting by ρ̂ the time-dependent probability density
of the configuration, there exists a smooth time-dependent current velocity field V̂ such that

b̂ = V̂ +
h̄

2m
∇ log ρ̂

and the continuity equation holds, i.e.,

∂ρ̂

∂t
= −∇̂ · (ρ̂V̂ ).

The stochastic Lagrangian variational principle introduced in [17, 20] and [21] claims
that the actual motion is described by a Markov diffusion which makes extremal the
mean discretized classical action related to L among smooth diffusions which satisfy a
3N -dimensional stochastic differential equation of type (2.2), with the same fixed Brownian
motion and such that the initial current velocity and the final configuration are fixed as random
variables.

In the limit of the discretization going to infinity the necessary and sufficient condition is
that the drift of the actual diffusion is given by

b̂ = V̂ +
h̄

2m
∇ ln ρ̂

where, for k = 1, . . . , 3N ,

∂t ρ̂ = −∇̂ · (ρ̂V̂ ) (2.3)
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[
∂t V̂ + (V̂ · ∇̂)V̂ − h̄2

2m2
∇̂
(

∇̂2√ρ̂√
ρ̂

)]
k

+
h̄

2m

3N∑
p=1

(∂p ln ρ̂ + ∂p)(∂kV̂p − ∂pV̂k)

= − 1

m
∂k�

α,N
tot . (2.4)

So, in case V̂ is a smooth gradient field we get the familiar Madelung equations for the
N-particle system. Indeed, putting, for some differentiable scalar field Ŝ,

V̂ = 1

m
∇̂Ŝ

and

�̂ = ρ̂
1
2 e

i
h̄
Ŝ

we get the 3N -dimensional Schrödinger equation (2.1).
Otherwise for general initial data the rotational terms, of the first order in h̄

m
, induce

dissipation.
Indeed if (ρ̂, V̂ ) is a smooth solution of (2.3) and (2.4) such that ∇̂ρ̂

ρ̂
is finite at infinity3,

we have

d

dt
E[ρ̂, V̂ ] = −h̄

2
E

⎡
⎣ 3N∑

k=1

3N∑
p=1

(∂pV̂k − ∂kV̂p)2

2

⎤
⎦

with

E[ρ̂, V̂ ] =
∫

R
3N

(
1

2
mV̂ 2 +

1

2
mÛ 2 + �

α,N
tot

)
ρ̂ dr̂

and Û := h̄
2m

∇̂ ln ρ̂ (3N -dimensional osmotic velocity).
This energy theorem was proved in [17] for N = 1 and d = 3. The present generalization

to a configurational space with higher dimension is straightforward.
Therefore irrotational solutions conserve the energy, which turns to be the usual quantum

mechanical expectation of the observable energy, that is

E = 〈�,H�〉
where 〈 , 〉 denotes the L2

C
(R3N, dr̂) scalar product. For generic initial data, with H being

bounded from below, Schrödinger solutions act as an attracting set, which corresponds to
dynamical equilibrium. In this case, the constructed quantization procedure reproduces the
canonical one after a relaxation, in some analogy with the Parisi–Wu approach [28].

We refer the reader to [23] for a recent survey on probabilistic and numerical aspects of
the stochastic quantization procedure.

3. One-particle description

In this section, we study the behaviour of a single particle in the system. For simplicity, we
will assume that the particles remain confined in a bounded region, for a finite time interval
[0, T ]. Under some regularity assumptions we can prove that, if the particles are bosons
and the system is at dynamical equilibrium, then they have a common probability density

3 We stress that the above-mentioned condition at infinity is only sufficient. Actually, there is at least one example,
namely the Gaussian solutions for the bidimensional harmonic oscillator [24], such that the condition is not satisfied
and the energy theorem still holds.
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for the position ρ and a common current velocity field v, which are related by the continuity
equation (propositions 1 and 4). The current velocity v is defined as a conditional mean given
the position of the particle. The full stochastic description of the motion is given by a non-
Markovian diffusion (proposition 2). Moreover, we are able to describe the time evolution for
(ρ, v) as a generalization of the Madelung fluid equations where the effect of interactions are
represented as disturbances (3.7) and (3.8).

To be precise we will assume in the following that ρ̂ has support in a compact set for
t = 0, and that the support remains in a given bounded domain for all t ∈ [0, T ]. Both ρ̂ and
V̂ are smooth by assumption. Indeed we will need that ρ̂ is of class C1

o as a function of t and
C2

o as function of the configuration variable r̂ , while the current V̂ ρ̂ is assumed of class C1
o as

functions of r̂ .
The requirement of these assumptions is motivated by the necessity in the following of

the exchange of some derivatives and integrals in proving propositions 1 and 2.
Actually, the assumptions just stated are not the weakest ones: alternatively one could

work in an unbounded region requiring that there exists an integrable function g on R
3N such

that |∂t ρ̂(r̂, t)| � g(r̂) dr̂ a.s., and analogously for ρ̂ and ρ̂V̂ as functions of the configurational
variable.

3.1. Identical particles and decomposition of the drift

We first introduce, taking the marginals of ρ̂, the one-particle probability densities ρi(ri , t), i =
1, . . . , N :

ρi(ri , t) =
∫

R
3(N−1)

ρ̂(r1, . . . , ri , . . . , rN, t)

driexcluded︷ ︸︸ ︷
dr1, . . . , drN .

It is easy to see that if ρ̂ is invariant under permutation of the positions of two generic particles
then the one-particle probability density is the same for all i = 1, 2, . . . , N . Indeed if, for all
i, j = 1, 2, . . . , N , one has

ρ̂(r1, . . . , ri , . . . , rj , . . . , rN, t) = ρ̂(r1, . . . , rj , . . . , ri , . . . , rN, t)

then, with ri = r,

ρi(r, t) =
∫

R
3(N−1)

ρ̂(r1, . . . , rj , . . . , r, . . . , rN, t)

dr excluded︷ ︸︸ ︷
dr1, . . . , drN

=
∫

R
3(N−1)

ρ̂(r1, . . . , r, . . . , rj , . . . , rN, t)

dr excluded︷ ︸︸ ︷
dr1, . . . , drN = ρj (r, t).

Therefore, in the case of identical particles we can write, for every Borel set I ⊂ R
3 and

for ρi(r, t) ≡ ρ(r, t),∀ i,

P[qi (t) ∈ I ] =
∫

I

ρ(r, t) dr.

Using the notation

V̂ = (V1, . . . , VN).

we define the ‘one-particle current velocity field’ for the ith particle by the equality

vi (r, t) = Eqi (t)=rVi (q1(t), . . . , qi (t), . . . , qN(t), t) (3.1)

where Eqi (t)=r denotes the conditional expectation, given qi (t) = r.
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As a consequence, we can state the following:

Proposition 1. One-particle continuity equation.

Let us assume that the particles are identical. Let also assumptions (i), (ii) and those
stated at the beginning of this section hold. Let ρ̂ be of class C1

o as a function of time and
let ρ̂V̂ be of class C1

o as a function of r̂ . Then, the one-particle probability density ρ and
the one-particle current velocity vi, defined in (3.1), for all i = 1, . . . , N , are related by the
continuity equation

∂tρ = −∇ · (ρvi).

Proof. In our assumptions we can write, for t ∈ [0, T ],

∂tρ1(r, t) = ∂t

∫
R

3(N−1)

ρ̂(r, r2, . . . , rN, t) dr2 · · · drN

=
∫

R
3(N−1)

∂t ρ̂(r, r2, . . . , rN, t) dr2 · · · drN

= −
∫

R
3(N−1)

N∑
i=1

∇i (ρ̂(r, r2, . . . , rN, t)Vi (r, r2, . . . , rN)) dr2 · · · drN

= −
∫

R
3(N−1)

∇1(ρ̂(r, r2, . . . , rN, t)V1(r, r2, . . . , rN)) dr2 · · · drN

= −∇1

[
ρ1(r, t)

∫
R

3(N−1)

ρ̂(r, r2, . . . , rN, t)V1(r, r2, . . . , rN)

ρ1(r, t)
dr2 · · · drN

]
= −∇1(ρ1(r, t)v1(r, t))

where we have integrated by parts all the terms of the sum except the first one and used the
definition of conditional density. �

We now make explicit the deviation of the actual drift of the ith particle from the part
depending only on the ith configuration.

Let us introduce the two scalar fields R̂ and R by putting ρ̂ := e2R̂ and ρ := e2R . We
define ξi and � by the equalities

ξi(r1, . . . , ri , . . . , rN, t) := Vi (r1, . . . , ri , . . . , rN, t) − vi (ri , t)) (3.2)

and

�(r1, . . . , rN, t) := R̂(r1, . . . , rN, t) −
N∑

j=1

R(rj, t). (3.3)

It is important to note that, ∀ i = 1, . . . , N ,

Eqi (t)=rξi(q1(t), . . . , qN(t), t) = 0

Eqi (t)=r∇i�(q1(t), . . . , qN(t), t) = 0

where the second equality follows from the definition of conditional density. Indeed, putting,
i = 1, we have in our assumptions, for t ∈ [0, T ] and integrating componentwise,

Eq1(t)=r∇1R̂(q1(t), . . . , qN(t), t) =
∫

R
3(N−1)

(∇1R̂(r, r2, . . . , rN, t))

× ρ̂(r, r2, . . . , rN, t)

ρ(r, t)
dr2, dr3, . . . , drN

= 1

2ρ(r, t)
∇ρ(r, t) = ∇R(r, t).
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We summarize the results in the following two non-trivial propositions.

Proposition 2. Non-Markovian one-particle diffusion.

In the case of identical particles, under assumptions (i) and (ii) and those stated at the
beginning of this section, the motion of the 1st particle is described by a non-Markovian
diffusion q1, with probability density ρ := e2R and current velocity v1, which satisfies the
equality

dq1(t) =
(

v1(q1(t), t) +
h̄

m
∇1R(q1(t), t)

)
dt

+ ζ1(q1(t), q2(t), . . . , qN(t), t) dt +

(
h̄

m

)1/2

dW1(t)

where

ζ1 := ξ1 +
h̄

m
∇1�

with ξ1 and � being defined by (3.2), (3.3), respectively, so that

Eq1(t)=rζ1 = 0.

Proposition 3. General one-particle dynamics.

Let assumptions (i), (ii) and those stated at the beginning of this section hold. Then, the
one-particle marginal density ρ and the one-particle current velocity v1 of the 1st particle in a
system of N identical particles satisfy the couple of PDEs, for k = 1, 2, 3,

[∂tρ + ∇ · (ρv1)](r, t) = 0 (3.4)

[∂tv1 + (v1 · ∇) v1 − h̄2

2m2
∇
(∇2√ρ√

ρ

)
+

h̄

2m
(∇ ln ρ + ∇) ∧ (∇ ∧ v1)]k

(r, t)

= − 1

m
Eq1(t)=r

{
∂k�

α,N
tot (q1(t), . . . , qN(t))

}− βk(α,N, r, t) (3.5)

where

βk(α,N, r, t) :=
[
β time + βconv +

h̄

2m
βrot − h̄2

2m2
βQ

]
k

(α,N, r, t)

and

β time(α,N, r, t) := Eq1(t)=r[∂tV1 − ∂tv1]

βconv(α,N, r, t) := Eq1(t)=r{(V̂ · ∇̂)V1 − (v1 · ∇)v1}

βrot
k (α,N, r, t) := Eq1(t)=r

⎧⎨
⎩

3N∑
p=1

(∂p ln ρ̂ + ∂p)(∂kV̂p − ∂pV̂k) − [(∇ ln ρ + ∇) ∧ (∇ ∧ v1)]k

⎫⎬
⎭

βQ(α,N, r, t) := Eq1(t)=r

{
∇1

(
∇̂2√ρ̂√

ρ̂

)
− ∇1

(∇2√ρ√
ρ

)}
.
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3.2. Symmetric and antisymmetric wavefunctions

In this subsection, we fix, without loss of generality, N = 2 and d = 1. We also do not make
explicit the dependence on time. For any solution �̂ to the Schrödinger equation we have, by
construction, that |�̂|2 = ρ̂. Thus, being ρ̂ symmetric with respect to permutation of positions
of two generic particles, �̂ can only be symmetric or antisymmetric.

We can prove the following:

Proposition 4. Bosons.

If �̂ is symmetric and belongs to C1(R2 → C) ∩ L2
C
(R2), then, putting

�̂ =
√

ρ̂ exp
i

h̄
Ŝ V̂ = 1

m
∇̂Ŝ,

we have, ∀ r, r ′ ∈ R,

V̂1(r, r
′) = V̂2(r

′, r)

and

v1(r) = Eq1(t)=r V̂1(q1(t), q2(t))

= Eq2(t)=r V̂2(q1(t), q2(t)) = v2(r). (3.6)

Proof. By symmetry of the wavefunction �̂ we can write

Ŝ(r, r ′) = Ŝ(r ′, r), ∀ r, r ′ ∈ R.

Moreover, being �̂ differentiable,

mV̂1(r, r
′) = ∂1Ŝ(r, r ′)

= lim
h→0

Ŝ(r + h, r ′) − Ŝ(r, r ′)
h

= lim
h→0

Ŝ(r ′, r + h) − Ŝ(r ′, r)
h

= ∂2Ŝ(r ′, r) = mV̂2(r
′, r).

Therefore, in our assumptions, by the definition of conditional density, we get

Eq1(t)=r V̂1(q1(t), q2(t)) =
∫

V̂1(r, r
′)

ρ̂(r, r ′)
ρ(r)

dr ′ =
∫

V̂2(r
′, r)

ρ̂(r ′, r)
ρ(r)

dr ′

= Eq2(t)=r V̂2(q1(t), q2(t))

which proves the assertion. �

Remark. This cannot be proved for fermions. Indeed if �̂ : R
2 → C is antisymmetric then

proposition 3 does not apply: since we have

�̂(r, r ′) = −�̂(r ′, r)

then, for some n = 0, 1, 2, . . . ,

Ŝ(r, r ′) = Ŝ(r ′, r) + (2n + 1)π.

As a consequence, one has, with ε > 0,

lim
ε→0

(Ŝ(r + ε, r) − Ŝ(r, r + ε)) � π.

Thus Ŝ is not differentiable and, for a system of N identical fermions, no 3N -dimensional
gradient current velocity field exists as a function of the configuration r̂ .
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Concluding we can claim that, in the gradient case and in general at the dynamical
equilibrium, up to mild regularity conditions, all bosons in the (isolated) interacting system
have the same one-particle current velocity field and that the fluid-dynamical equations are

[∂tρ + ∇ · (ρv)](r, t) = 0 (3.7)

[
∂tv + (v · ∇) v − h̄2

2m2
∇
(∇2√ρ√

ρ

)]
k

(r, t)

= − 1

m
Eq1(t)=r

{
∂k�

α,N
tot (q1(t), . . . , qN(t))

}− βk(α,N, r, t) (3.8)

where

βk(α,N, r, t) :=
[
β time + βconv − h̄2

2m2
βQ

]
k

(α,N, r, t).

We stress that this is a quite general (orthodox) description, which is expected to hold
for any N and any sufficiently smooth interaction potentials. The study of various kinds of
interactions and proper limits as well as rescalings under which this general boson dynamics
can be written in a closed form (deterministic or stochastic) will be the subject of future
work. As a first test we will consider in the next section the case of a short-range smooth pair
interaction. This is known to lead, starting from the N-bodies Schrödinger equation, to the
correct Gross–Pitaevskii ground state [14, 15]. Very recently this result has been extended to
solutions of the time-dependent Gross–Pitaevskii equation for factorized initial states and zero
external potential [8]. This proof is based on a proper rescaling of the interaction potential
for N going to infinity. Both the one-particle limit solutions correspond to exactly factorized
N-bodies states.

In the next section, we will exploit our stochastic description in order to fix the proper
scales and orders of approximations so that the Gross–Pitaevskii equation can be derived in
general from the N-body problem for a given pair short-range interaction potential.

4. A particular case: the Gross–Pitaevskii equation

We first introduce some natural restrictions under which the one-particle boson dynamics can
be rewritten, up to the interaction term, in a closed deterministic form (subsection 4.1). Then
we model the interaction as a smooth pair potential with compact support and we rigorously
derive the Gross–Pitaevskii equation (subsection 4.2). Detailed calculation of the nonlinear
term is given in the appendix.

4.1. General restrictions

In what follows, we will assume that the initial N-body state is not entangled. As a
consequence, in case the coupling parameter α is equal to zero, the solution �̂ to the
N-body Schrödinger equation would be factorized. We also require that �̂, together with
its first and second spatial derivatives, be close to the factorized solution for small values of
α. We assume

(a) �̂(r1, . . . , rN, t) − �N
i=1ψi(ri , t) = O(α),

(b) ∇(p)

i �̂(r1, . . . , rN, t) − ∇(p)

i �N
j=1ψi(ri , t) = O(α),∀ i = 1, . . . , N;p = 1, 2

where |ψi |2 = ρ and Im∇ψi

ψi
= v,∀ i = 1, . . . , N .
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Moreover, we consider the following restrictions:

(c1) β time = 0: this is true for all stationary solutions. If the solution is not stationary then we
must choose a time scale where ∂t [V1(q1(t), . . . , qN(t), t) − v(q1(t), t)] , i = 1, . . . , N,

has negligible conditional expectation given the position of the considered particle.
(c2) βconv = 0: this is true for the ground state. In general on a scale where

∇1 [V1(q1(t), . . . , qN(t), t) − v(q1(t), t)] has negligible conditional expectation given
the position of the considered particle, we have

βconv = Eq1(t)=r

{
(V1 · ∇1)V1 +

N∑
i=2

(Vi · ∇i )V1

}
− (v1 · ∇1)v1(r, t)

= O(α2) + Eq1(t)=r∇1

N∑
i=2

1

2
|Vi |2. (4.1)

But in the case of a great number of particles, the total kinetic energy due to current
velocity contribution is expected not to be sensitive to variations of the position of a single
particle. Thus, we will assume N finite but sufficiently large to neglect the last term
in (4.1).

(c3)
(

h̄2

m2

)
βQ = 0: in our assumptions βQ goes to zero as O(α). Thus, the condition means

that, estimating the approximations in terms of h̄
m

and α, we are neglecting a term of order

O
(

h̄2

m2

)
O(α).

Therefore, in our assumptions, for the proper spacetime and size scales, βk in (3.8) can
be neglected to the orders O(α)O

(
h̄2

m2

)
and O(α2).

4.2. Short-range smooth pair interaction potential

We now calculate, to the order O(α2), the one-particle interaction potential for a dilute system
with short-range smooth interaction.

We define

�int(r1, . . . , rN, α) := K

2

N∑
i=1

N∑
j=1,j �=i

hBα(ri )(rj )

where K is a constant which can be positive or negative, Bα(r) is the open sphere centred in r,
with volume α, and hBα(r) satisfies the following assumptions, which simply mean that hBα(ri )

is a good smooth approximation of the indicator of the sphere Bα(ri ):

(i) 0 � hBα(ri )(rj ) = hBα(rj )(ri ),
(ii) hBα(r) ∈ C1

o , supp hBα(r) = Bα(r),
(iii) 0 �

∫
R

3(IBα(ri )(r) − hBα(ri )(r))d
3r = O(α2),

where IBα(r) denotes the function which takes value 1 in Bα(r) and 0 outside.
We can then show that the interaction term can be written in the following form:

Eq1(t)=r1 [∇1�int](q1(t), . . . , qN(t), α) = K(N − 1){O(α2) + ∇1[αρ(r1, t) + O(α2)]}. (4.2)

The calculation is reported in detail in the appendix.
Let us now introduce the expected number of particles in any finite volume δV ⊂ R

3.
The number of particles in δV at time t is the random variable

NδV (t) :=
N∑

i=1

IδV (qi (t)).
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Its expectation is

ENδV (t) =
∫

δV

Nρ(r, t) d3r.

Thus ρ̄(r, t) := Nρ(r, t), r ∈ R
3, is the expected density of particles in the physical space.

It is not trivial that the couple (ρ̄, v) is a true state of a physical fluid with density ρ̄ and
velocity field v ≡ vi ,∀ i = 1, . . . , N .

With conditions (c1)–(c3) the dynamical equations, independently of the choice of the
particle, become

∂t ρ̄ + ∇ · (ρ̄v) = 0 (4.3)

∂tv + (v · ∇)v − h̄2

2m2
∇
(∇2√ρ̄√

ρ̄

)

= − 1

m
∇� − 1

m
K

N − 1

N
{NO(α2) + ∇[αρ̄ + NO(α2))]}. (4.4)

We now approximate N−1
N

to 1 and neglect terms of order O(α2).

As a consequence, introducing the ‘fluid wavefunction’ ψ̄ := ρ̄
1
2 exp i

h̄
S, where

1
m

∇S := v, we find the Gross–Pitaevskii equation

ih̄∂t ψ̄ =
{
− h̄2

2m
∇2 + � + Kα|ψ̄ |2

}
ψ̄.

Concluding, in our assumptions, after properly fixing the spacetime and size scales, we
have derived the dynamical equation for the complex field ψ̄ , normalized to N, whose physical
meaning is in agreement with the canonical interpretation, and |ψ̄ |2 representing in fact the
expected density of particles.

This has been done up to terms of orders O(α)O
((

h̄
m

)2)
and O(α2). Note that the

nonlinear term is calculated (see the appendix) without exploiting, as usual, any effective
interaction potential (see, for example, [30]).

5. Conclusions and remarks

We have studied the behaviour in finite time of a (isolated) system of N identical interacting
bosons starting from the N-body quantum problem. We have exploited the stochastic
Lagrangian variational principle and derived, under regularity conditions, the one-particle
dynamics essentially by means of conditional expectations given the position at time t of a
single particle, leading to the general boson dynamics (3.7) and (3.8). This description is
expected to hold for any N and reasonably smooth interaction potentials.

For the particular case of a dilute gas with short-range interaction our work provides
a derivation of the Gross–Pitaevskii equation which starts from the N-body problem and
where no effective interaction potential is introduced. In particular no low energy condition
is assumed, as in most part of the literature tracing back to the work by Bogolubov [5] and
developed by Gross [10] and Pitaevskii [29], where the system is initially described within
quantum field theory (see, for example, [16] and [30] for accurate reviews).

A derivation of the Gross–Pitaevskii equation from the N-body Hamiltonian, as far as
the ground state is concerned, was done in [14, 15] and very recently extended to the free
evolution from factorized states [8]. This is obtained by means of a rigorous rescaling with
N of the coupling constant in the Schrödinger equation. These particular cases correspond
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to exactly factorized limit solutions of the rescaled N-body quantum problem for N going
to infinity. In contrast, in our approach, after fixing the proper scales, N remains finite and
the approximations are estimated as orders of both α, i.e. the volume of the support of the
interaction potential, and h̄

m
. On the other hand, we do not lead to factorized states but to

a fluid-dynamical description for the evolution of the expected density of particles and the
common one-particle current velocity field. The full stochastic description of the motion of a
generic boson is given in terms of a non-Markovian diffusion, where the common drift is in
fact perturbed by a noise due to the configuration of the whole N-body system (proposition 2).

The reason by which we have chosen to exploit the Lagrangian variational principle in
place of other variational principles proposed in the literature, or simply starting from the
3N-dimensional Schrödinger equation and then associating its every solution with a Nelson
diffusion in the standard way, is both mathematical and physical. We recall that, by Carlen’s
work [7], Nelson diffusions associated with any solution of a Schrödinger equation exist in
weak sense, provided the finite energy condition is satisfied. But in the case of nodes of
the wavefunction the current velocity is typically singular. As a consequence, the approach
proposed in this work appears to be more convenient from the mathematical point of view:
in fact one can assume in a quite natural way the regularity properties of ρ̂ and V̂ required
to prove the results in section 3, since all time-dependent fields (ρ̂, V̂ ), related to diffusions
which satisfy the Lagrangian variational principle, are smooth in finite time by construction.
Singularities possibly arise asymptotically, as shown for example in [6].

From the physical point of view, it is not trivial that, if we relax the irrotationality condition,
at least close to dynamical equilibrium, one can also take into account the interaction-
dependent term h̄

m
βrot, which is of the order O

(
h̄
m

)
O(α), in the general one-particle dynamics

in proposition 3. This fact could represent a new insight to face the open problem of modelling
rotonic excitations.

Moreover, the vorticity-induced dissipation, typical of a system described by the stochastic
Lagrangian variational principle, would suggest an alternative to other solutions proposed in
the literature [13] to simulate the relaxation towards vortex lattices of a rotating superfluid
[1, 18, 19] and [31].
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Appendix

To prove equality (4.2) we first observe that, ∀ j �= 1, by (iii) of subsection 4.2, being ρ̂ bounded
as a consequence of the assumptions in section 3, and since the conditional expectation, given
q1(t) = r1, is equal to zero if ρ(r1, t) is equal to zero,

Eq1(t)=r1hBα(q1(t))(qj (t)) =
∫

R
3(N−1)

hBα(r1)(rj )
ρ̂(r1, . . . , rN, t)

ρ(r1, t)
d3r2 · · · d3rj · · · d3rN

= 0(α2) +
1

ρ(r1, t)

∫
R

3(N−1)

IBα(r1)(rj )ρ̂(r1, . . . , rN, t) d3r2 · · · d3rj · · · d3rN .

By assumption (a) we get

Eq1(t)=r1hBα(q1(t))(qj (t)) = O(α2) +
∫

R
3(N−1)

IBα(r1)(rj )�
N
i=2ρ(ri , t) d3r2 · · · d3rj · · · d3rN

= O(α2) + αρ(r1, t). (A.1)
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The interacting force in one-particle dynamics reads, recalling in particular (i),

Eq1(t)=r1 [∇1�int] (q1(t), . . . , qN(t), α) = K
∑
j �=1

Eq1(t)=r1

[∇1hBα(qj (t))

]
(q1(t)). (A.2)

With the convention that the integral symbol is understood to be applied componentwise, we
get, in our assumptions,

Eq1(t)=r1

[∇1hBα(qj (t))

]
(q1(t))

=
∫

R
3(N−1)

∇1

[
hBα(rj )(r1)

ρ̂(r1, . . . , rj , . . . , rN, t)

ρ(r1, t)

]
d3r2 · · · d3rj · · · d3rN

−
∫

R
3(N−1)

hBα(rj )(r1)∇1

[
ρ̂(r1, . . . , rj , . . . , rN, t)

ρ(r1, t)

]
d3r2 · · · d3rj · · · d3rN .

(A.3)

But recalling assumption (b) we have

∇1

(
ρ̂(r1, . . . , rj , . . . , rN, t)

ρ(r1, t)

)
= �N

j=2ρ(rj , t)∇1 exp[2�(r1, . . . , rj , . . . , rN, t)] = O(α).

As a consequence, the second term in the equality above is O(α2). Moreover, recalling
again regularity assumptions introduced in section 3, we can obtain

Eq1(t)=r1

[∇1hBα(qj (t))

]
(q1(t))

= ∇1

∫
R

3(N−1)

hBα(rj )(r1)
ρ̂(r1, . . . , rj , . . . , rN, t)

ρ(r1(t))
d3r2 · · · d3rj · · · d3rN + O(α2)

= ∇1Eq1(t)=r1

[
hBα(qj (t))

]
(q1(t)) + O(α2) (A.4)

and finally, by (A.2), (A.4) and (A.1), we get the equality (4.2).
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